SC200/SC300 Extra Software Programming Guide

Custom Property

1. KSPROPERTY CUSTOM XET ANALOG VIDEO AGC (204)

The property allows you to enable or disable TW6805’s AGC loop circuit. When
the AGC loop function is disabled, the AGC gain can be decided by your software
manually. The range of AGC gain is from O to 511. If MSB bit.31 is set, the
AGC loop function will be enabled.

SUPPORT VALUE: 0x00000000 ~ OxOOOOO1lFF - DISABLE AGC LOOP & SET AGC GAIN
SUPPORT VALUE: 0x80000000 - ENABLE AGC LOOP

EXAMPLE#01 :
AMESDK_SET CUSTOM PROPERTY (hDev, 204, 0x80000000);

EXAMPLE#02 :
AMESDK_SET CUSTOM PROPERTY (hDev, 204, 0x00000100);

2. KSPROPERTY CUSTOM XET ANALOG_AUDIO VOLUME (251)

The property allows you to adjust hardware’s audio volume. The support range

is from 0 to 255. 0 1is mute.
SUPPORT VALUE: 0 ~ 255 - 0% ~ 100%

EXAMPLE#01:
AMESDK SET CUSTOM PROPERTY (hDev, 251, 0);

EXAMPLE#02:
AMESDK SET CUSTOM PROPERTY (hDev, 251, 128);

3. KSPROPERTY CUSTOM XET ANALOG_VIDEO_ SWITCH_SPEED (205)

Software programmer can use this property to control the switching speed under
switching mode'”). Currently, there are 3 level speeds that can be controlled
by you. Please reference this table as below: Here, the total fps means the
total output frames per second for one chip under switching mode. For example,
the total fps is 20fps. If you split one chip into four sub-channels, the
every sub-channel’s fps will be 5fps.

) Here, the switching mode means that one TW6805 chip is spitted to 2, 3 or
4 channels. We call these channels as sub-channel. SC300016 owns 4 chips and

max 16 sub-channels.

RESOLUTION SPEED TOTAL FPS COMMENT
720x4
0x480 2 20FPS
704x480
640x480
D1 8 1 20FPS
720x576
704x576
0 12FPS
0640x576
720x240 5 5 0FPS
704%x240
640x240 TO OBTAIN PERFECT OUTPUT RESULT, BUT TO
HALF D1 1 30FPS
T720%x288 CAUSE ONE LEFT-RIGHT SHIFTING SIDE EFFECT.
704x288
0 15FPS
640x288
24
360x240 2 20FPS
352x240
320%x240 TO OBTAIN PERFECT OUTPUT RESULT, BUT TO
CIF 1 30FPS
360x288 CAUSE ONE LEFT-RIGHT SHIFTING SIDE EFFECT.
352x288
0 15FPS
320x288

SUPPORT VALUE: 0, 1, 2

EXAMPLE#01:
AMESDK SET CUSTOM PROPERTY (hDev, 205, 0);

EXAMPLE#02:
AMESDK SET CUSTOM PROPERTY (hDev, 205, 1);

4. KSPROPERTY CUSTOM XET ANALOG VIDEO SWITCH CHANNEL TABLE (206)

In default setting, our switching algorithm uses one averaged channel table
to control the channel switching sequence. The table size is 12 items length.
Every item can be 0, 1, 2 or 3 to correspond to its sub-channels. For example,
the split number is 4. The default switching channel table will be as { O,
1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3 }.

Now, you can control the switching table dynamically by our SDK. For example,
the table can be updated to { 0, 0, 1, 2, 0, O, 1, 2, 0, O, 1, 2 }. The total
20fps for every sub-channel will be changed as below:

CH#01: 10fps,

CH#02: 5fps,

CH#03: 5fps, and

CH#04: Ofps.

For another example, the table is { 0, 0, O, 1, 1, 1, 2, 2, 2, 3, 3, 3 }.

The result simulates one channel jumping effect.

Moreover, the table also can support single channel switching such as { 1,
i, 1, 1,1, 1, 1, 1, 1, 1, 1, 1 }. When the table is set, the switching mode
will auto be returned to real-time mode. So, by this table, the CH#02’s fps
will be up to 30fps.

EXAMPLE#01: DISABLE CH#03.
BYTE TABLE[12] = {0, 1, 3, 0, 1, 3, 0, 1, 3, 0, 1, 3 };
AMESDK_SET CUSTOM PROPERTY EX(hDev, 206, TABLE, 12);

EXAMPLE#02: CHANNEL JUMPING.
BYTE TABLE[12] = {0, O, O, 1, 1, 1, 2, 2, 2, 3, 3, 3 };
AMESDK_SET CUSTOM PROPERTY EX(hDev, 206, TABLE, 12);

EXAMPLE#03: GET CURRENT SWITCH CHANNEL TABLE.
BYTE TABLE[12];
AMESDK_GET_ CUSTOM PROPERTY EX(hDev, 206, TABLE, 12);

EXAMPLE#04: SINGLE CHANNEL OUTPUT.
BYTE TABLE[12] = { O, O, O, O, O, O, O, O, O, O, O, O };
AMESDK SET CUSTOM PROPERTY EX(hDev, 206, TABLE, 12);

5. KSPROPERTY CUSTOM XET ANALOG_VIDEO_ SWITCH_ RESOLUTION TABLE (207)

The custom property allows the developer to change default resolution at any
time. For example, at four channel’s switching mode, developer need obtain
this configuration as below:

CH#01: 704x480

CH#02: 704x240

CH#03: 352x240

CH#04: 352x240

The property programming is similar to ANALOG _VIDEO SWITCH CHANNEL TABLE.
It also uses 12 bytes to setup the kernel driver’s resolution table. Every
item is corresponded to its channel item in the switching channel table. The

parameter range is from 0 to 2.

0x00: D1
O0x01l: HALF.D1
0x02: CIF.

EXAMPLE#01: SETUP RESOLUTION TABLE AS BELOW:

CH#01: 704x480

CH#02: 704x240

CH#03: 352x240

CH#04: 352x240

BYTE CHANNEL TABLE[12] = { 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3 };
BYTE RESOLUTION TABLE[12] = { 0, 1, 2, 2, 0, 1, 2, 2, 0, 1, 2, 2 };
AMESDK SET CUSTOM PROPERTY EX(hDev, 206, CHANNEL TABLE, 12);

AMESDK SET CUSTOM PROPERTY EX(hDev, 207, RESOLUTION TABLE, 12);

6. KSPROPERTY CUSTOM XET ANALOG VIDEO POST FRAME RATE (208)

Generally, the software developer can use AMESDK SET FORMAT to control video
frame rate output. For some special applications, developer could adjust the
frame rate dynamically during recording. The post frame rate is dynamically
used to adjust current stream output, which is set by AMESDK SET FORMAT

function at initialize stage. The range of the post frame rate property is
from 0 to 255. It is identical to the skip number of frame (or field). The

value 1 means the recording frame rate is 15.000fps in NTSC.

EXAMPLE#01: SET FRAMERATE TO 30.000FPS:

AMESDK SET CUSTOM PROPERTY (hDev, 208, 0); // 30FPS / (0 + 1) = 30FPS
EXAMPLE#02: SET FRAMERATE TO 15.000FPS:
AMESDK_ SET CUSTOM PROPERTY (hDev, 208, 1); // 30FPS / (1 + 1) = 15FPS
EXAMPLE#03: SET FRAMERATE TO 10.000FPS:
AMESDK SET CUSTOM PROPERTY (hDev, 208, 2); // 30FPS / (2 + 1) = 10FPS

7. KSPROPERTY CUSTOM XET GPIO_DIRECTION (940)
7. KSPROPERTY CUSTOM XET GPIO_DATA (941)
7. KSPROPERTY CUSTOM XET GPIO_SUPPORT (942) (READ ONLY)

The property allows you to access TW6805’s GPIO interface. The property
KSPROPERTY CUSTOM XET GPIO DIRECTION allows you to control its direction.
Here, writing 1 to bit enables this pin as output pin. Usually, the GPIO is

controlled by the first chipset in one board.

SUPPORT VALUE: 0 ~ 1 - INPUT ~ OUTPUT

The property KSPROPERTY CUSTOM XET GPIO DATA allows you to access GPIO’s
data.

SUPPORT VALUE: 0 ~ 1 - LOW ~ HIGH

The property KSPROPERTY CUSTOM XET GPIO SUPPORT allows you to obtain GPIO’s
information (pin size) on hardware board. Developer can use it to check if

the device can support GPIO access.

SUPPORT VALUE: 0 IS NON-SUPPORT

EXAMPLE#01: TO DEFINE GPIO AS 8 OUTPUT PINS [0:7] AND 8 INPUT PINS [8:15].
AMESDK SET CUSTOM PROPERTY (hDev, 940, OxO0FF);

EXAMPLE#02: TO DEFINE GPIO AS 16 OUTPUT PINS [0:15] THEN PULL HIGH FOR ALL.
AMESDK SET CUSTOM PROPERTY (hDev, 940, OxFFFE);
AMESDK SET CUSTOM PROPERTY (hDev, 941, OxFFFE);

EXAMPLE#03: TO DEFINE GPIO AS 16 INPUT PINS [0:15] THEN READ DATA FROM IT.
AMESDK_SET CUSTOM PROPERTY (hDev, 940, 0x0000);
AMESDK_GET CUSTOM PROPERTY (hDev, 941, &GPIO);

8. Application Note for AMESDK GET LOCK()

Customer to use AMESDK GET LOCK, please notes it. If your card is N series,

the return value is described by 1 bit only. High is signal lock, and low

isunlock. If your card is D series, the return valuewill use 2 bits to describe

both sub-channels’ status. If card is Q series, we will use 4 bits to describe

all sub-channels.

EXAMPLE#01: GET SC300N4 SIGNAL STATUS.

AMESDK GET LOCK(hDev[0], é&status[O
AMESDK GET LOCK(hDev[1], é&status[1
AMESDK GET LOCK(hDev[2], &status[2
AMESDK GET LOCK(hDev[3], &status[3

EXAMPLE#02: GET SC300D8 SIGNAL STATUS.

AMESDK GET LOCK(hDev[0], &status[O
AMESDK GET LOCK(hDev[1], &status[1
AMESDK GET LOCK(hDev[2], &status[2
AMESDK GET LOCK(hDev[3], &status[3

EXAMPLE#03: GET SC300Q16 SIGNAL STATUS.

AMESDK GET LOCK(hDev[0], &status[O
AMESDK GET LOCK(hDev[1], &status[1
AMESDK GET LOCK(hDev[2], &status[2
AMESDK GET LOCK(hDev[3], &status[3

SR T |

[SN T |

—_ ~— o~ ~— —_ — ~— ~—

—_ — o~ ~—

~e

~e

~e

~e

~e

~e

//
//
//
//

//
//
//
//

//
//
//
//

GET
GET
GET
GET

GET
GET
GET
GET

GET
GET
GET
GET

CHO1
CHOZ2
CHO3
CHO4

CHO1
CHO3
CHO5
CHO7

CHO1
CHOS
CHO9
CH13

STATUS
STATUS
STATUS
STATUS

~ CHOZ2
~ CHO4
~ CHO6
~ CHOS8

~ CHO4
~ CHOS8
~ CH12
~ CH16

STATUS
STATUS
STATUS
STATUS

STATUS
STATUS
STATUS
STATUS

9. Access Custom Property for DirectShow Developer

Customer uses DirectShow to develop software can bypass our SDK to access
TW6805 directly. All custom properties are implemented by IKsPropertySet

interface. The interface can be queried from our capture source filter.

EXAMPLE#01: SET SWITCHING SPEED.

GUID GUID KPS TW6805 = { 0xD1E5209F, 0x68FD, 0x4529, 0xBE, 0xEO, 0x5E, 0x7A, Ox1F, 0x47, 0x92, 0x12 };

10. Application Note for DirectShow Developer

The developer who uses DirectShow to access our capture source filter need
check the frame size in the callback function of your SampleGrabber class.
If the frame size is 0 bytes, it means the frame is one bad frame. You should

drop it. More detail, please check with our engineer team directly.

